Parallelizations of TFETI-1 coarse problem using PETSc
David Horák

Centre of Excellence IT4Innovations and Dep. of Applied Math., VSB-Tech. Univ. of Ostrava, 17. listopadu 15, CZ 70833 Ostrava, Czech Republic

Report contains the main results reached by dual method TFETI using our library FLLOP (FETI Light Layer On top of PETSc) [1] on the Cray XE6 machine HECToR – joint work with Václav Hapla. As a benchmark, model 2D elastostatic problem of the steel traverse was chosen.

The FETI methods having as the input primal data of decomposed problem into N_s subdomains with block-diagonal stiffness matrix, vector of forces, block-diagonal null space matrix (which can be formed directly from the mesh without any computation in TFETI case) and constraint matrix for subdomains’ gluing

$$
K = \begin{bmatrix} K^1 & \cdots & \hat{K} & \cdots & K^{N_s} \end{bmatrix}, f = \begin{bmatrix} f^1 \vdots f^{N_s} \end{bmatrix}, R = \begin{bmatrix} R^1 & \cdots \hat{R} & \cdots & R^{N_s} \end{bmatrix}, B = [B^1 \cdots B^{N_s}]
$$

blend iterative and direct solvers. The dual problem

$$
PF\lambda = Pd
$$

is solved iteratively using e.g. CG or PCG method; in each iteration, the auxiliary problems related to the application of an unassembled system matrix PF (subdomain problems’ solutions and projector application in dual operator) are solved directly. Here dual objects are denoted by

$$
F = BK^+B^T, G = R^TB^T, P = I - Q, Q = G^T(GG^T)^{-1}G, e = R^Tf, d = BK^+f - F\hat{G}^T(GG^T)^{-1}e.
$$

The first auxiliary problem is the stiffness matrix’s pseudoinverse $(K^+: KK^+K = K)$ application K^+v. It is parallelizable without any data transfers because of a nice block-diagonal structure. The second one is the coarse problem (CP) solution

$$
GG^Tx = y
$$

appearing in the application of the projector P onto the kernel of so called natural coarse space matrix G. However, this problem does not possess such a nice structure suitable for parallel processing; some communication is needed in this case.

Natural effort using the massively parallel computers is to maximize number of subdomains so that sizes of subdomain stiffness matrices are reduced which accelerates not only their factorization and subsequent pseudoinverse application but also reduces the number of iterations. Negative effect of that is an increase of dual and null space dimension, which decelerate the CP solution, so that the bottleneck of the TFETI method is the application of the projector.

We have suggested and compared several strategies of CP solution. These strategies of the projector application can be viewed from two points (see [2]):

I. how G is distributed and its action carried out:
A) horizontal blocks,
B) vertical blocks.
II. how the CP is solved which implies the level of preprocessing of G and GG^T:
1) iteratively using CG by the master process,
2) directly using Cholesky/LU factorization by the master process,
3) applying explicit inverse of GG^T in parallel,
4) the CP is eliminated, provided that the rows of G are orthonormalized.

All B cases have a big advantage - we can parallelize all dual vectors and operations with them. Numerical experiments confirm as best choice the strategy B4 and then B3.

<table>
<thead>
<tr>
<th>Number of subdom.</th>
<th>192</th>
<th>768</th>
<th>1728</th>
<th>3072</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cores</td>
<td>192</td>
<td>768</td>
<td>1728</td>
<td>3072</td>
</tr>
<tr>
<td>Primal dim.</td>
<td>12,580,224</td>
<td>50,320,896</td>
<td>114,476,544</td>
<td>201,283,584</td>
</tr>
<tr>
<td>Dual dim.</td>
<td>129,984</td>
<td>537,216</td>
<td>1,228,464</td>
<td>2,183,424</td>
</tr>
<tr>
<td>Kernel dim.</td>
<td>576</td>
<td>2304</td>
<td>5184</td>
<td>9216</td>
</tr>
<tr>
<td>G_{rank}</td>
<td>1.001e-02</td>
<td>1.152e-02</td>
<td>1.489e-02</td>
<td>1.527e-02</td>
</tr>
<tr>
<td>broadcast of G to all cores</td>
<td>9.102e-00</td>
<td>3.710e-00</td>
<td>8.353e-00</td>
<td>1.389e+00</td>
</tr>
<tr>
<td>B1: GG^T assembing</td>
<td>6.710e-02</td>
<td>2.469e-01</td>
<td>7.155e-01</td>
<td>1.203e+00</td>
</tr>
<tr>
<td>B2: GG^T Chol. fact.</td>
<td>8.090e-00</td>
<td>1.042e-00</td>
<td>8.108e-00</td>
<td>2.004e+00</td>
</tr>
<tr>
<td>B3: inverse</td>
<td>1.767e-01</td>
<td>1.149e+00</td>
<td>6.401e+00</td>
<td>9.264e+00</td>
</tr>
<tr>
<td>B4: orthonormalization</td>
<td>9.669e-02</td>
<td>5.983e-00</td>
<td>3.262e+00</td>
<td>4.652e+00</td>
</tr>
<tr>
<td>B1: Q_G action</td>
<td>1.070e-02</td>
<td>6.934e-02</td>
<td>3.204e-01</td>
<td>6.424e-01</td>
</tr>
<tr>
<td>B3: Q_G action</td>
<td>5.822e-03</td>
<td>3.742e-02</td>
<td>1.760e-01</td>
<td>3.621e-01</td>
</tr>
<tr>
<td>B4: Q_G action</td>
<td>6.096e-03</td>
<td>2.694e-02</td>
<td>6.424e-02</td>
<td>9.874e-02</td>
</tr>
</tbody>
</table>

Acknowledgements
The research has also been supported by the grants: HPC-Europa2 project funded by the European Commission - DG Research in the Seventh Framework Programme under grant agreement No. 228398, PRACE 2IP project receiving funding from the EU’s Seventh Framework Programme (FP7/2007-2013) under grant agreement No. RI-283493, the Projects of major infrastructures for research, development and innovation of Ministry of Education, Youth and Sports (LM2011033), the European Regional Development Fund in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070)

References